

skip to main |
 skip to sidebar

The Invisible Things Lab's blog

Kernel, Hypervisor, Virtualization, Trusted Computing and other system-level security stuff

Wednesday, August 26, 2009

PDF signing and beyond

Today I got an advertising email from GlobalSign (where I previously bought a code signing certificate for Vista kernel drivers some years ago) highlighting their new (?) type of certificates for signing of Adobe PDF files. It made me curious, because, frankly, I've been recently more and more missing this feature. After a quick online research it turned out that this whole Adobe Certified Documents Services (CDS) seem to be nothing new, as apparently even Adobe Reader 6.0 had support for verifying those CDS certificates. The certificates are also available from other popular certification authorities like e.g. Entrust and Verisign, and a couple of others.

So, I immediately felt stupid that I haven't been aware of such a great feature, which apparently is out there for a few years now. Why I thought it was so great a feature? Consider the following scenario…

At our Invisible Things Lab resources page we offer a handful of files to download — slides and some proof of concept code. The website is served over a plaintext HTTP. This means that if you're downloading anything over a public WiFi (hotel, airport lounge, etc) you never know if the PDF you actually get has not been infected somewhere in the middle, e.g. by a guy in the lobby that is messing with the hotel WiFi.

So, one might argue that I should have paid a few hundred bucks and get an SSL certificate for my website and start serving it over HTTPS. But here's the problem — I, as zillions of other small businesses and individuals, host my website on some 5-dollar-a-month one-of-the-thousands hosting provider. I have zero knowledge about what people work there and if they can be trusted, and I also know nothing (and have zero impact) on how secure (or not, for that matter) the server is. (Same applies to my cell phone carrier, ISP, etc, BTW).

Now, the SSL certificate for the website "knows" nothing about how the files on my website should look like, in particular if they are compromised or not. All the SSL certificate does is to give assurance to the remote client that he or she downloaded the actual files that were on the server in the moment of downloading — whether they were the original ones authored by me, or perhaps maliciously modified by somebody who got access to the server.

So, the solution with an SSL certificate would work only if I trusted my web server, which could be assumed only if I run my own dedicated server. That, however, would be an overkill for a small company like ITL, especially that our business is not based on our web presence — in fact the website is maintained mainly for other researchers and students, who can easily download our papers and code from there, and also for the reporters so they can e.g. download a press release from there.

Surprisingly, the website has never been compromised, probably because it doesn't present an interesting target for any skilled person (or maybe exceptionally skilled people work at the hosting provider?). But I cannot know for sure, as I don't constantly monitor all the hashes of all the files, as this would require… well a dedicated server that would be running an SHA1 calculating script in a loop for 24/7 :)

Of course, zillions of other websites works this very same way and present the very same problems.

Now, ability to sign PDFs would be just a great solution here, because I could sign all those files with my certificate, and then all the people downloading stuff from ITL could know they are getting original PDFs that were created on one of the ITL members desktop computers, no matter how compromised the web server or the network connection is.

For the same reasons, I would welcome if others started doing the same, as currently I simply must assume every PDF I download from the net (and PDFs account for the majority of file downloads I do) to be potentially malicious. So, I always open them in my Red or Yellow VM (depending on the source of the download), and only if it "looks good" (very fuzzy term, I know), I might decide to move it to my host desktop (it's easier to work with PDFs on your host, and actually you should use your host desktop for something).

(Yes, I know, Kostya Kortchinsky, or Rafal, can sometimes escape from VMWare, but still I believe that today the best isolation I can get on a desktop, without sacrificing much convince, is via a type II hypervisor. It's horribly inelegant, but well, that's life).

So, I read some more about this Adobe CDS, being all excited about it, and ready to spend a few hundred euros on a certificate, only to realize that it doesn't look as good as I thought.

First disappointment comes from the fact that you must create a PDF using Adobe Acrobat software (not the Reader, but the commercial one). I've created all my PDFs using either Office (in the past) or iWork (today), and none of them seem to offer a way to digitally sign the PDF. I would like to get a simple tool, say pdfsign.exe, that I could use to sign any PDF I have, no matter how I generated it. Also, not surprisingly, the Mac native PDF viewer (Preview) doesn't seem to recognize the digital signature, and I bet some Linux PDF viewers do not as well.

Worst of all, even the Acrobat Reader 9, that I tested under Windows, and that correctly displayed all the CDS information, does one unbelievably stupid thing — it parses and renders the whole PDF before displaying the signature info. So, if you downloaded a malicious PDF, Acrobat Reader will happily open it and parse, without asking you a question of whether you would like to open it (as it is perhaps unsigned). At least I was unable to find an option that would force it to do that. So, if this PDF contained an exploit for the reader, it surely would get executed. Compare this with the (correct) behavior of Vista UAC where it presents the executable signature details before executing it.

You can see how your software works with Adobe PDF signatures, e.g. by looking at this exemplary file signed by GlobalSign.

So, Adobe CDS, in the form they are today, seem to be pretty useless, as far as protection from potentially malicious PDFs is considered (they surely have other positive applications, e.g. to certify about authenticity of e.g. a diploma).

But wouldn't it be great to have such a file signing mechanism globally adopted and not only for PDFs, but for any sort of files, including ZIPs, tgz's, heck, even plain text files? And have our main OSes generically recognize those signatures and display unified prompts of whether we want to allow an application to to open the file or not? Perhaps, in some situations, we could even define policies for specific applications. This seems easy to do from the technical point of view — we just need to "hook" (oh, God, did I say "hook"?) high-level OS API's like e.g. open() or CreateFile().

What about PGP and possibility of using this for signing any sort of files? Well, we use PGP a lot at ITL, but mainly for securing peer-to-peer communication (e.g. between us and our clients). There really is no good way to publish one's PGP key — the concept of Web of Trust might be good for some closed groups of people, but not for publishing files "to the world". And, of course, the first thing that an attacker who subverted PDFs on our website will do is to also subvert the PGP key displayed on the website. I also tried once to publish a PGP key to a key server, but got discouraged immediately after I noticed it didn't use SSL for submission. BTW, anybody knows if the key servers today use SSL? If not, how the trust is established? Maybe email clients, e.g. Thunderbird, come with built in PGP keys for select key servers?

So, I guess that was the main point of writing this post — to express how madly I would welcome a generic, OS-based, non-obligatory, signature verification for files, based on PKI :)

Ah, before a dozen of people jumps to the comment box to tell me that digital signatures do not assure non-maliciousness of anything — please don't do that, because I actually know that. In fact, it is not possible to assure non-maliciousness of pretty much anything, especially without strictly defining an ethical system we would like to use first. What the signatures provide is the liability, so that I know who to sue, in case my naked holiday pictures got leaked to the public because of some malicious PDF exploiting my system. In that case I can sue either the actual person who signed the PDF (if this person is identifiable) or the certification authority who issued the certificate to a wrong (unidentifiable) person.

Posted by

Joanna Rutkowska

at
Wednesday, August 26, 2009

Labels:
fighting for a better world,
general,
philosophical

8 comments:

	

Kris
said...

	

hmmm... a world where everything is retracable to its original creator... wouldn't the logical next step (at least for politicians and parts of the it-industry) be a personalized ipv6 adress that stays with one beside the name in the passport?

	

August 27, 2009 11:17 PM

	

Liudvikas Bukys
said...

	

Before you upload your key to a keyserver, you would attend a key-signing party where you would have your colleagues and friends sign your key, thereby attaching yourself to the web of trust that's already out there. Then you're not depending on the keyserver's security. It's exactly analogous to your creating signed PDFs so you don't have to depend on your $5/month web server being secure.

	

August 28, 2009 9:56 PM

	

Joanna Rutkowska
said...

	

@Liudvikas: There are problems with relying on PGP Web of Trust. E.g. how many "key-signing parties" should I attend to assure that every person on the planet, who might potentially be interested in my PDFs/whatever, can verify the trust chain? Probably alot, and, in some cases (e.g. some exotic countries) maybe the chain can never be built (e.g. some people might never travel abroad).

This fact alone is something that discourages me from relaying on this web of trust for PGP keys (not to mention that the older I am, the less I prefer any sort of parties, especially if the number of attendees exceeds, say, 4).

	

August 29, 2009 12:30 PM

	

Anonymous
said...

	

In a near future national public key infrastructures might be used to autenticate people. It can also be used for signing things and it even has legal value. With the new european citizen cards each citizen gets his own certificate that can be checked by acessing a state run keyserver. I already know of one university which allows people to remotely autenticate with the new citizen card. I even hope to see more mass deployments of it to solve the weak password problem.

Of course this also is a danger because most people don't understand the technology and will be using it from already compromised machines...

But for the people which use it correctly it might be interesting.

	

August 29, 2009 1:38 PM

	

Rafael Coninck Teigao
said...

	

Joanna,

There are a few (free/open source) tools that may be used for signing PDFs. Most of them are built using iText (either in Java or .Net). I have even coded one that allows multiple signatures and certification.

As for distributing Trust, Adobe now has a program that allows any CA that meets their criteria to have its root certificate delivered to any Adobe Reader 9 (or later) automatically:
http://www.adobe.com/security/approved-trust-list.html

Cheers!

	

September 02, 2009 2:42 PM

	

Joanna Rutkowska
said...

	

@Rafael:

Do those tools (can you provide links?) support Adobe AATL only, or both ATTL and CDS?

If CDS, which CA's are confirmed to work with them?

Can I use them to sign any PDF?

Any of those tools available natively for Mac? (Without the need to install .Net)

	

September 02, 2009 4:48 PM

	

Rafael Coninck Teigao
said...

	

Actually, the tools don't care all that much for the certificate being used. They may or may not be part of either AATL or CDS.

Adobe Reader, on the other hand, must be configured to trust certificates not distributed through AATL or CDS, but that's a simple configuration, and if the signature process is done properly (i.e. the full chain is also attached), only the CA must be added/trusted.

In our case we are using a Java applet (webstart) to sign using smartcard-stored certificates. These must be in compliance with federal guidelines for legal signatures.

If you wanna try it, just send me an email at rcteigao () gmail and I can send you a link or some code.

Cheers!

	

September 02, 2009 8:33 PM

	

GEST
said...

	

I use the free tool PortableSigner (http://portablesigner.forge.osor.eu/) for signing PDF documents with my self signed certificate (created with OpenSSL).

It is a great way to make sure you're PDF can't be changed after they have been signed. The only problem is that Acrobat Reader will display a "author cannot be verified" message when the document is opened, because a self-signed certificated was used to sign the document.

	

September 26, 2009 2:24 PM

Post a Comment

Newer Post

Older Post

Home

Subscribe to:
Post Comments (Atom)

About Me

	

Joanna Rutkowska

	Founder of Invisible Things Lab, Qubes OS project lead.

View my complete profile

Links

	twitter: @rootkovska
	Qubes Project
	Invisible Things Lab

Blog Archive

	

 ►

2015

(1)
	

 ►

February

(1)

	

 ►

2014

(6)
	

 ►

November

(1)

	

 ►

September

(1)

	

 ►

August

(2)

	

 ►

April

(1)

	

 ►

January

(1)

	

 ►

2013

(8)
	

 ►

December

(1)

	

 ►

November

(1)

	

 ►

September

(1)

	

 ►

August

(1)

	

 ►

June

(1)

	

 ►

March

(1)

	

 ►

February

(2)

	

 ►

2012

(8)
	

 ►

December

(1)

	

 ►

September

(2)

	

 ►

July

(1)

	

 ►

June

(1)

	

 ►

March

(1)

	

 ►

February

(1)

	

 ►

January

(1)

	

 ►

2011

(17)
	

 ►

December

(2)

	

 ►

September

(3)

	

 ►

August

(1)

	

 ►

June

(3)

	

 ►

May

(3)

	

 ►

April

(3)

	

 ►

March

(2)

	

 ►

2010

(15)
	

 ►

December

(1)

	

 ►

October

(1)

	

 ►

September

(4)

	

 ►

August

(2)

	

 ►

July

(1)

	

 ►

June

(1)

	

 ►

May

(2)

	

 ►

April

(2)

	

 ►

January

(1)

	

 ▼

2009

(21)
	

 ►

December

(1)

	

 ►

October

(1)

	

 ►

September

(2)

	

 ▼

August

(2)
	PDF signing and beyond
	Vegas Toys (Part I): The Ring -3 Tools

	

 ►

July

(2)

	

 ►

June

(3)

	

 ►

May

(1)

	

 ►

March

(4)

	

 ►

February

(2)

	

 ►

January

(3)

	

 ►

2008

(15)
	

 ►

September

(3)

	

 ►

August

(4)

	

 ►

July

(2)

	

 ►

May

(1)

	

 ►

April

(4)

	

 ►

March

(1)

	

 ►

2007

(15)
	

 ►

October

(2)

	

 ►

August

(2)

	

 ►

June

(1)

	

 ►

May

(1)

	

 ►

April

(2)

	

 ►

March

(2)

	

 ►

February

(3)

	

 ►

January

(2)

	

 ►

2006

(8)
	

 ►

November

(1)

	

 ►

October

(1)

	

 ►

September

(1)

	

 ►

August

(1)

	

 ►

July

(1)

	

 ►

June

(1)

	

 ►

May

(2)

Labels

qubes

general

trusted computing

attack

os security

philosophical

fighting for a better world

exploit

company news

trusted execution technology

xen hacking

tpm

chipset

conferences

disk encryption

hypervisor rootkits

smm

virtualization based rootkits

backdoors

bad guys attacking joanna

cloud

rootkits

usb

xen heap exploiting

BIOS

bitlocker

challanges

formal verification

nested virtualization

odyssey

personal

r3

saving-the-world-afterhours

secure architecture

Total Pageviews

